Urs Fürholz **Albert Haim***

to Dr. N. Sutin for several helpful discussions.

Department of Chemistry State University of New **York** Stony Brook, New York 11794

Received February 11 ~ *1985*

Synthesis of Heterobimetallic Complexes from Metal Carbonyl Complexes of Bis(diisopropy1amino)phospbine

Sir:

Recently we reported' the facile and selective cleavage of one diisopropylamino group from the **bis(diisopropy1amino)phosphine** metal carbonyl complexes $(i-Pr_2N)_2$ PHM(CO)_n $(i-Pr$ = isopropyl; $n = 5$, $M = Cr$, Mo , and W ; $n = 4$, $M = Fe$) with hydrogen halides HX ($X = Cl$ and Br) to give the corresponding metal carbonyl complexes *i*-Pr₂NP(H)XM(CO)_n. We have now found that reactions of these latter complexes with the strongly nucleophilic2 metal carbonyl anion CpFe(CO)_2^- provide a route to novel heterobimetallic complexes containing a bridging i -Pr₂NPH phosphido group having potentially reactive P-H and P-N **bonds.** The complexes initially formed in such reactions in at least three cases undergo facile single decarbonylation reactions with formation of a heteronuclear metal-metal bond. These complexes therefore provide a direct indication of the effects of metal-metal bond formation **on** the properties of phosphido complexes. Related heterobimetallic diphenylphosphido chemistry, involving however totally different preparative methods, was reported in 1971 by Yasufuku and Yamazaki.³

A tetrahydrofuran solution of $NaFe(CO)₂Cp$ freed from excess sodium amalgam⁴ was treated at -78 °C with a stoichiometric amount of i -Pr₂NP(H)XM(CO)₅ (M = Cr, X = Br; M = Mo and $W, X = Cl$). After the mixture was stirred overnight at room temperature, the solvent was removed in vacuum. The residue was extracted with pentane. Filtration, concentration, and cooling the pentane extracts gave orange-brown crystals of the corresponding CpFe(CO)₂P(H)(N-i-Pr₂)M(CO)₅ derivative (Table I).

These complexes appear to have structures $I(M = Cr, Mo,$ W) containing an intact CpFe(CO)₂ unit and no heteronuclear metal-metal bond. Their infrared spectra in the $\nu(CO)$ region

- (1) King, **R.** B.; Fu, W.-K. *J. Orgunomet.* Chem. **1984,** 272, C33.
- (2) Dessy, R. E.; Pohl, R. L.; King, R. B. J. Am. Chem. Soc. 1966, 88, 5121.
(3) Yasufuku, K.; Yamazaki, H. J. Organomet. Chem. 1971, 28, 415.
(4) King, R. B. Acc. Chem. Res. 1970, 3, 417.
- (5) The compounds FeMC₁₇H₂₀O₆NP (M = Cr and W) are isomorphous,
forming monoclinic crystals of space group $P2_1/c$ with $Z = 4$. For M
= Cr: $a = 14.362$ (5) A, $b = 7.733$ (2) A, $c = 19.244$ (8) A, $\beta = 104.00$ $(3)^\circ$, $V = 2073.8$ (12) \AA ³, $D_{\text{pald}} = 1.515$ g/cm³. For $M = W$: $a = 14.491$ (5) \AA , $b = 7.808$ (2) \AA , $c = 19.456$ (8) \AA , $\beta = 103.17$ (3)^o, *V* $=$ 2143.6 (12) \mathbf{A}^3 , $D_{\text{calo}} = 1.874$ g/cm³. Data (5734 points for $\mathbf{M} =$ Cr and 5929 points for $\mathbf{M} = \mathbf{W}$) were collected at room temperature by using molybdenum Ka radiation $(\lambda = 0.71069 \text{ Å})$, a variable scan rate, a θ -2 θ scan mode, and a scan width of 1,2° below K α_1 and 1.2° below $K\alpha_2$ to a maximum 2 θ value of 116°. Data were corrected for Lorentz, polarization, and background effects. After removal of redundant data and space group forbidden data, 2414 ($M = Cr$) and 2271 $(M = W)$ reflections were considered observed $[I > 3.0\sigma(I)]$. The final agreement factors, *R,* after successive least-squares/different Fourier

cycles were 5.3% for $M = Cr$ and 6.8% for $M = W$.

Figure 1. ORTEP diagram of the complex $\text{CpFeCr(CO)}_6\text{P(H)}(\text{N}-i\text{-Pr}_2)$ $(III, M = Cr)$.

(Table **I)** exhibit **no** bridging carbonyl frequencies, and among the terminal carbonyl frequencies, two (e.g., those at 1970 and 1920 in $\text{CpFe(CO)}_2\text{P(H)}(\text{N-}i\text{-}Pr_2)\text{Cr(CO)}_5$) can be assigned to the CpFe(CO)₂ unit, with the pattern of the remaining $\nu(CO)$ frequencies corresponding to that expected for the $M(CO)$ _s group. A property of $\text{CpFe(CO)}_2\text{P(H)}(N-i\text{-}Pr_2)\text{W(CO)}_5$ (I, $M = W$) of chemical interest is the cleavage of its remaining diisopropylamino group by hydrogen halides HX ($X = Cl$ and Br) in hexane solution to give the corresponding brown crystalline derivatives CpFe- $(CO)_2$ PHXW $(CO)_5$ (II, $X = Cl$ and Br).

The most interesting chemical property of the complexes $CpFe(CO)₂P(H)(N-i-Pr₂)M(CO)₅$ (M = Cr and W) is their facile photochemical decarbonylation to give the corresponding complexes **CpFeM(CO),P(H)(N-i-Pr,),** shown by X-ray crystallography to have structures **III** ($M = Cr$ and W) containing a heteronuclear metal-metal bond. Thus a red-orange pentane solution of CpFe(CO)₂P(H)(N-i-Pr₂)M(CO)₅ becomes deep brown after only *5* min of ultraviolet irradiation. Evaporation of solvent from the filtered pentane solution after 10 min of irradiation followed by recrystallization from hexane gave black $CpFeCr(CO)₆P(H)(N-i-Pr₂)$. The structure **III** (M = Cr) of this complex was suggested by the observation of a bridging *u(C0)* frequency at 181 1 cm-' (Table **I)** in addition **to** several terminal $\nu(CO)$ frequencies. This unusual structure was subsequently confirmed by X-ray diffraction. Our initial infrared spectra of the tungsten analogue $CpFeW(CO)_{6}P(H)(N-i-Pr_{2})$ failed to exhibit its bridging ν (CO) frequency. We therefore also determined the structure of $\text{CpFeW(CO)}_6P(H)(N-i-Pr_2)$ by X-ray diffraction. After this structure determination indicated that CpFeW- $(CO)_{6}P(H)(N-i-Pr_{2})$ had structure **III** $(M = W)$ completely analogous to $CpFeCr(CO)_{6}P(H)(N-i-Pr_{2})$, we reran the infrared spectrum in much more concentrated solution and found the expected bridging ν (CO) frequency around 1800 cm⁻¹, which was much weaker than that of its chromium analogue.

The structures of $\text{CpFeM(CO)}_6P(H)(N-i\text{-}Pr_2)$ (M = Cr and W) indicate that the iron is bonded to a terminal carbonyl group and pentahapto bonded to a cyclopentadienyl ring and that the other metal M is bonded to four terminal carbonyl groups. The iron and M atoms are within bonding distances (Fe-Cr $= 2.733$) (2) Å in CpFeCr(CO)₆P(H)(N-*i*-Pr₂) and Fe-W = 2.827 (4) Å in $\text{CpFeW(CO)}_6P(H)(N-i\text{-}Pr_2)$. These metal-metal bonds are bridged by a carbonyl group (Fe-C = 2.023 **(9),** Cr-C = 2.023

Table I. Heterobimetallic Compounds with Phosphido Bridges Containing a Phosphorus-Hydrogen Bond^a

compd ^b	yield, %	IR ν (CO) freq. ^c cm ⁻¹	$31P NMR^d$				
			$\delta(P)$	$l^1J(\mathrm{PH})$ l, Hz	$H NMR^d$		
					δ (P-H)	$\delta(C,H_1)$	δ (CH ₃)
		(A) Compounds without a Metal-Metal Bond					
$CpFe(CO), P(H)(N-i-Pr2)Cr(CO),$	73 ^e	2040 w, 2005 m, 1970 s, 1955 w, 1935 s, 1920 s	62.6	295	7.31	5.04	1.23
$CpFe(CO)_{2}P(H)(N-i-Pr_{2})Mo(CO)_{3}$	66 ^e	2056 w. 2006 m. 1973 s. 1939 s. 1931 s.	36.7	302	7.20	4.90	1.25
$CpFe(CO), P(H)(N-i-Pr2)W(CO),$	69e	2060 w. 2010 m. 1970 s. 1945 s. 1935 m. 1920 s.	6.7	310	7.57	4.98	1.22
$CpFe(CO)_2P(H)(N-i-Pr_2)Mn(CO)_2Cp$	63 ^e	2001 s. 1956 s. 1928 s. 1874 s	98.7	306	7.7	4.9.4.5	1.2
CpFe(CO), PHClW(CO),	57ſ	2069 w. 2038 m. 2003 m. 1954 s. 1948 s. 1933 s	89.9	290	7.72	5.17	none
CpFe(CO), PHBrW(CO),	431	2069 w. 2037 m. 1995 m. 1940 s. 1935 s. 1925 s.	63.7	286	6.82	5.18	none
		(B) Compounds with a Metal-Metal Bond					
$CpFeCr(CO)_{6}P(H)(N-i-Pr_{2})$	538	2031 m. 1963 s. 1959 s. 1926 s. 1811 m ⁿ	206.3	360	9.2	4.6	1.3
$CpFeW(CO)_{6}P(H)(N-i-Pr_{2})$	52 ^s	2047 m. 1968 s. 1952 s. 1931 s. 1810 vw ⁿ	159.8	363	9.9	4.6	1.3
$Cp_2FeMn(CO)$ ₃ $P(H)(N-i-Pr_2)$	21 ^g	1940 s, 1876 s, 1755 s ^h	224.8	347		4.6, 4.5	1.3

["]All compounds in this table gave correct analyses for carbon, hydrogen, and nitrogen or halogen. ["]Cp = η^5 -cyclopentadienyl, *i*-Pr = isopropyl. These v(CO) frequencies were measured in hexane or cyclohexane. ^dThese NMR spectra were measured in CDCl₃ solution. "Yield from the NaFe(CO)₂Cp + *i*-Pr₂NP(H)XM(CO)₃ or *i*-Pr₂)W(CO)₃ + HX reaction. 8Yield from the photolysis **of CpFe(CO)2P(H)(N-i-Pr2)M(CO)5** or **CpFe(CO)2P(H)(N-i-Pr2)Mn(C0)2Cp.** * Bridging u(C0) frequency. 'Paramagnetic impurities in solution prevented observation of the proton P-H resonance.

(7) Å in CpFeCr(CO)_s $P(H)(N-i-Pr_2)$ and Fe-C = 2.12 (3), W-C $= 2.07$ (2) Å in CpFeW(CO)₆P(H)(N-*i*-Pr₂)) and a *i*-Pr₂NPH phosphido group (Fe-P = **2.207** (2), Cr-P = 2.292 **(2)** *8,* in $CpFeCr(CO)_{6}P(H)(N-i-Pr_{2})$ and $Fe-P = 2.201$ (5), W-P = 2.433 (6) Å in $\text{CpFeW(CO)}_6P(H)(N-i\text{-}Pr_2)$). The bridging carbonyl group is symmetrical within experimental error despite the dissimilarity of the metal atoms being bridged.

Table I indicates substantial changes in various NMR parameters upon decarbonylation of I to I11 with heteronuclear metal-metal bond formation leading to a FePM three-membered ring. Most dramatic is the \sim 150 ppm downfield phosphorus-31 chemical shift **upon** conversion from I to 111, which is undoubtedly a consequence of the ring formation. Also noticeable is a ~ 60 Hz increase in the $\frac{1}{J(P-H)}$ coupling constant and a \sim 2 ppm downfield proton chemical shift of the P-H hydrogen.

Related bimetallic compounds containing cyclopentadienylmanganese carbonyl units can also be prepared. Thus treatment of a hexane solution of $(i-Pr_2N)_2PHMn(CO)_2Cp$ with hydrogen chloride gives an 89% yield of yellow i -Pr₂NP(H)ClMn(CO)₂Cp [infrared ν (CO) in cyclohexane, 1961 and 1901 cm⁻¹; phosphorus-31 NMR, δ 144.2 ($|^{1}J(PH)| = 373$ Hz)]. Reaction of *i*- $Pr₂NP(H)ClMn(CO)₂Cp$ with $NaFe(CO)₂Cp$ in tetrahydrofuran gives deep red **CpFe(CO),P(H)(N-i-Pr,)Mn(CO),Cp,** formulated as IV **on** the basis of its spectroscopic properties (Table I).

Ultraviolet irradiation of IV in cyclohexane solution gives black $\text{Cp}_2\text{FeMn(CO)}, P(\text{H})(\text{N}-i\text{-Pr}_2)$ formulated as V because of the observation of a bridging ν (CO) frequency at 1755 cm⁻¹ in its infrared spectrum.

The preliminary observations described in this communication suggest that the selective cleavage of diisopropylamino groups from metal carbonyl complexes of $(i-Pr_2N)_2PH$ can lead ultimately to a rich variety of interesting heterobimetallic derivatives. These derivatives contain potentially reactive phosphorus-nitrogen bonds in contrast to the numerous known diarylphosphido heterobimetallic derivatives such as $WIrH(\mu-PPh_2)_2(CO)_5(PPh_3)$,⁶ $(OC)_4Mn(\mu-PR_2)(\mu-H)Mo(CO)_2Cp (R = p-tolyl), (OC)_5W(\mu-₂)))$

$PPh_2)Re(CO)₄$ ⁸ and $Cp_2ZrW(\mu-PPh_2)_2(CO)₄$.⁹

Acknowledgment. We are indebted to the Air Force Office of Scientific Research for partial support of this work at the University of Georgia under Grant AFOSR-84-0050.

Supplementary Material Available: Listings of crystal data, positional parameters, anisotropic thermal parameters, bond angles, and bond distances in the two complexes $CpFeM(CO)_{6}P(H)(N-i-Pr_{2})$ (M = Cr and W) and an ORTEP diagram of CpFeW(CO)₆P(H)(N-*i*-Pr₂) (8 pages). Ordering information is given on any current masthead page.

- (8) Mercer, W. C.; Whittle, R. R.; Burkhardt, E. **W.;** Geoffroy, G. L. *Owanometallics* **1985.** *4.* 68.
- (9) Targos, T. S.; Rosen, R. P.; Whittle, R. R.; Geoffroy, G. L. *Inorg. Chem.* **1985,** *24,* 1375.

Received May 21, 1985

In Pursuit of the Active Site of Assimilatory Sulfite Reductases. Reactions of Ferric Porphyrin and $[Fe, S, (SPh)₄]$ ² Complexes $(n = 2, 4)$

Sir:

Stillwater, Oklahoma 74078

Spectroscopic investigations of the catalytically active β subunit of *E. coli* NADPH-sulfite reductase have established that the two prosthetic groups at the active site, siroheme and an $Fe₄S₄$ cluster, are chemically linked.¹⁻⁷ Exchange interactions between these centers are observed in several different oxidation and ligation states of the enzyme and during substrate reduction. Similar

- (2) Janick, P. A.; Siegel, **L.** M. *Biochemistry* **1982,** *21,* 3538-3547.
- (31 Christner, J. **A.;** Munck, **E.;** Janick, **P. A.;** Siegel, **L.** M. *J. Biol. Chem.* **1983,** *258,* 11 147-1 1156.
- (4) Christner, J. **A.;** Janick, P. **A.;** Siegel, L. M.; Munck, **E.** *J. Biol. Chem.* **1983,** *258,* 11 157-1 1164.
- (5) Janick, **P.** A.; Rueger, D. C.; Krueger, R. J.; Barker, M. **J.;** Siegel, L. M. *Biochemistry* **1983,** *22,* 396-408. (6) Janick, P. A.; Siegel, L. M. *Biochemistry* **1982,** *22,* 504-514.
-
- (7) Christner, J. **A.;** Munck, E.; Kent, T. **A.;** Janick, P. **A.;** Salerno, J. C.; Siegel, **L.** M. *J. Am. Chem. SOC.* **1984,** *106,* 6787-6794.

⁽⁶⁾ Breen, **M.** J.; Geoffroy, G. **L.;** Rheingold, **A.** L.; Fultz, **W.** C. *J. Am. Chem. Soc.* **1983,** *105,* 1069.

⁽⁷⁾ Casey, C. **P.;** Bullock, R. M. *Organometallics* **1984,** *3,* 1100.

⁽¹⁾ Christner, J. A.; Munck, E.; Janick, P. **A,;** Siegel, L. M. *J. Biol. Chem.* **1981,** *256,* 2098-2101.